Community detection in graphs Santo Fortunato 2010 http://arxiv.org/abs/0906.0612 // This is a major literature review, totaling over 100 pages (including references), about different methods for detecting communities and clusters in graphs. There are lots of different methods and algorithms for defining and identifying a “community”, and there are no universally agreed upon definitions or methods, but these reviews are very useful for understanding the state of network science. // I went through and clipped the majority of the 40+ figures and example networks, and uploaded them to the photo album archive on my G+ stream. I’ve also curated a few pages of key information, especially concerning modularity and hierarchy, for easy browsing and reference here. // I strongly encourage people to check out the original paper, which includes an appendix introducing basic terms and concepts in graph theory. Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods […]