“These experiments were performed by Christian Ethier, a post-doctoral fellow, and Emily Oby, a graduate student in neuroscience, both at the Feinberg School of Medicine. The researchers gave the monkeys a local anesthetic to block nerve activity at the elbow, causing temporary, painless paralysis of the hand. With the help of the special devices in the brain and the arm – together called a neuroprosthesis — the monkeys’ brain signals were used to control tiny electric currents delivered in less than 40 milliseconds to their muscles, causing them to contract, and allowing the monkeys to pick up the ball and complete the task nearly as well as they did before.
“The monkey won’t use his hand perfectly, but there is a process of motor learning that we think is very similar to the process you go through when you learn to use a new computer mouse or a different tennis racquet. Things are different and you learn to adjust to them,” said Miller, also a professor of physiology and of physical medicine and rehabilitation at Feinberg and a Sensory Motor Performance Program lab chief at the Rehabilitation Institute of Chicago.
Because the researchers computed the relationship between brain activity and muscle activity, the neuroprosthesis actually senses and interprets a variety of movements a monkey may want to make, theoretically enabling it to make a range of voluntary hand movements.
“This gives the monkey voluntary control of his hand that is not possible with the current clinical prostheses,” Miller said.”
Neuroscience News originally shared this post:
New Brain-Machine Interface Moves a Paralyzed Hand
New technology bypasses spinal cord and delivers electrical signals from brain directly to muscles. A new Northwestern Medicine brain-machine technology deli